Карлики рождают гигантов - страница 62
Забвение закона совокупного действия факторов дорого обходится земледельцам. Порождая ошибки в теории, оно приводит к появлению необоснованных рекомендаций на практике.
Другая крайность — сведение всех задач земледелия к одному какому-либо фактору. Было время, когда панацеей объявили травопольную систему. Травополье при всех его положительных качествах — это только часть факторов, влияющих на урожай. Оно улучшает структуру почвы. Если сеется клевер или люцерна, в почве накапливается азот. А калий, фосфор? Травополье не может заменить удобрений. А без химизации интенсивное земледелие невозможно. Урожайность будет топтаться на месте.
Травопольщиков осудили, призвав в арбитры Д. Н. Прянишникова. „Минеральные удобрения — вот путь повышения урожайности. Дадим больше туков земле — решим все проблемы! Будут удобрения — будет хлеб! Так учил Прянишников“».
Нет, не так учил Прянишников. Далеко не так! Его работы об азотном балансе в земледелии, о бобовых, о навозе и минеральных удобрениях — это образец комплексного подхода к агрономическим проблемам. Прянишников ратовал за расширение туковой промышленности и в то же время был ревностным сторонником увеличения площадей клевера, люцерны, люпина. Вот что он писал: «Новые источники азота (селитра и синтетический аммиак) нигде не заменяли собой азота клевера или навоза, везде они дополняли раньше известные приемы, увеличивая общую сумму вводимого азота… Расширение посевов клевера (и люцерны) потребует при этом гораздо меньше расходов, чем при создании азотных заводов. К тому же эти расходы будут окуплены животноводством».
Комплексный подход к экспериментальной биологий неизбежно опирается на коллективный опыт науки. Ибо только коллективный опыт может дать нам целостное представление о тех или иных явлениях жизни.
Хорошо по этому поводу высказался Д. Бернал: «Перспективы многочисленных достижений, охватывающих огромные области науки, настойчиво выдвигают на первый план постоянно растущую необходимость сотрудничества. Существенный прогресс в биологии необходимо представляет собой — безразлично, признается этот факт или нет, — широкую комбинированную операцию, ибо ценность работы каждого человека зависит от работы десятков других. Она требует хорошо организованной службы информации и известного чувства стратегии, которое не помешает распознанию и использованию неожиданного».
Под знаком интеграла
Современные науки — от химии до экономики — идут вперед под знаком интеграла.
Логика развития привела также к математизации биологии.
Проникновение математики в биологию по-настоящему еще только начинается.
Взглянуть на проблемы жизни своими глазами химику было относительно легко, ибо большинство процессов, происходящих в живой среде, — это химические реакции, язык которых химику близок и понятен. Сама среда эта, представляющая собой водно-коллоидный раствор, объект исследования в химии распространенный.
Физик, взявшийся за биологию, тоже имел дело со знакомыми явлениями и вещами. Молекулы, структуры вещества, водопроницаемость, осмотическое давление, радиоактивность…
Биологи сравнительно быстро овладели химическими и физическими методами исследования жизни, ибо объект исследования им был давно и хорошо знаком.
Все три науки привыкли оперировать конкретными фактами и явлениями, поэтому их взаимопроникновение и взаимообогащение протекало более или менее гладко.
С математикой было сложнее. Долгое время существовало положение, когда биологи понимали, но не умели, а математики умели, но не понимали.
Математики должны были превратить в язык отвлеченных формул конкретные факты и невероятно сложные, не до конца еще понятые явления.

Биологам, желающим привлечь на помощь себе математику, предстояло научиться оперировать абстрактным языком цифр.
И для тех и для других основная трудность заключалась в том, что математический аппарат, который был бы полностью пригоден для точного описания жизненных процессов, не создан и поныне.
И все же на одном из перекрестков науки биология встретилась с кибернетикой — самой сложной и самой развитой отраслью математики.
Задача биокибернетики — изучение общих закономерностей живого. Каждый организм, с точки зрения математика (как, впрочем, и в действительности), представляет собой сложную динамическую систему, где все составные части связаны друг с другом, а сама она с внешним миром. И организм и среда — это системы, где информация хранится, перерабатывается и передается. Следовательно, к ним вполне применим язык и методы кибернетики.
Один из примеров передачи информации в биологии — наследственная информация. Она передается от родителей к потомству.
Биолог скажет: организм развивается.
Биофизик скажет: идет редупликация молекул нуклеиновой кислоты и передача этих молекул во все образующиеся вновь клетки организма.
Кибернетик скажет: передается наследственная информация.

Задачи генетики, говоря языком кибернетики, заключаются в следующем: изучить строение этой информации (а попросту говоря, установить ее размер, форму и место хранения); изучить способы ее материального кодирования (а попросту говоря, вещества и реакции, с помощью которых она передается, и условия этой передачи); наконец, выяснить способы ее проявления в новом организме в процессе его индивидуального развития.