Логика для всех. От пиратов до мудрецов - страница 49
2) если верно Б, то верно и А?
Задача 5. Землянин Вася сказал: «Все марсиане лжецы». Прав ли Вася?
Задача 6. Есть 30 гирек, которые весят 1 г, 2 г, 3 г…, 30 г. Можно ли разложить их: 1) на две кучки одинакового веса; 2) на три кучки одинакового веса?
Задача 7. 1) Можно ли заполнить таблицу 3x3 натуральными числами так, чтобы сумма чисел в каждой строке была четным числом, а в каждом столбце – нечетным? 2) А таблицу 4x4?
Задача 8. Верно ли, что периметр любого четырехугольника, целиком находящегося внутри данного квадрата, меньше периметра этого квадрата?
Задача 9. Верно ли, что все числа вида 2 + 15, где n – натуральное число, простые?
Задача 10. Рассмотрим натуральные числа, в записи которых нет нулей.
1) Найдется ли среди них десятизначное число, делящееся на сумму своих цифр?
2) А стозначное?
Задача 11.1) Какие из высказываний А – Д означают одно и то же?
2) Будем считать высказывание А истинным. Какие из других высказываний в таком случае наверняка истинны?
А: Дед Мороз – волшебник.
Б: Существует хотя бы один дед-волшебник.
В: Существует ровно один дед-волшебник.
Г: Некоторые деды – волшебники.
Д: Некоторые волшебники – деды.
Задача 12*. Найдите ошибку в рассуждениях.
«Рассмотрим три высказывания:
А: Существует хотя бы один дед-волшебник.
Б: Дед Мороз – волшебник.
В: Все деды – волшебники.
Можно ли утверждать, что если верно В, то верно и А? Нет: контрпримером является ситуация, когда множество дедов пусто (аналогично задаче про Мишиных одноклассников).
С другой стороны, если верно В, то верно и Б (иначе Дед Мороз служил бы контрпримером к высказыванию В). Но если верно Б, то верно и А (для доказательства существования достаточно привести пример, в данном случае Дед Мороз – пример). Итак, если верно В, то верно и А».
Задача 13*. Прокомментируйте доказательство существования Деда Мороза, изложенное в виде диалога двух логиков.
Первый: «Если я не ошибаюсь, Дед Мороз существует».
Второй: «Разумеется, Дед Мороз существует, если вы не ошибаетесь».
Первый: «Следовательно, мое утверждение истинно».
Второй: «Разумеется!»
Первый: «Итак, я не ошибся, а вы согласились с тем, что если я не ошибаюсь, то Дед Мороз существует. Следовательно, Дед Мороз существует».
Занятие 4. Пиратская логика, или Высказывания с союзами «и», «или»
Задача 1. Чтобы найти клад, надо пройти от старой пальмы 100 футов на восток, потом 100 футов на север. Четыре пирата высказались про место расположения клада.
Арчи: от пальмы 30 футов на восток, потом 120 футов на север;
Бен: от пальмы 100 футов на восток, потом 120 футов на север;
Вилли: от пальмы 30 футов на восток, потом 100 футов на север;
Глен: от пальмы 100 футов на восток, потом 100 футов на север.
Подберите подходящую строку в таблице истинности для высказываний каждого из 4 пиратов.
Задача 2. Какие из следующих высказываний истинны, а какие ложны?
1) Утка умеет плавать и летать.
2) Курица умеет плавать и летать.
3) Камбала умеет плавать и летать.
Задача 3. Какие из следующих шести высказываний истинны, а какие ложны?
1) Береза – это куст или дерево. Береза – это либо куст, либо дерево.
2) Собака – животное или камбала – рыба. Либо собака – животное, либо камбала – рыба.
3) Собака – это птица или рыба. Собака – это либо птица, либо рыба.
Задача 4. 1) В сказке Ганса Христиана Андерсена «Новое платье короля» обманщики пообещали, что «платье… обладает чудесным свойством становиться невидимым для всякого человека, который не на своем месте сидит или непроходимо глуп». Изобразите с помощью кругов Эйлера тех, для кого платье должно стать невидимым.
2) Вот отрывок из «Песни ткачей» Владимира Васильева:
Мы не напрасно взялись ткать,
Чтоб мог народ, в конце концов,
О короле сказать:
«Либо он дурак – либо не на месте,
Либо не на месте – либо он дурак,
Либо он дурак – либо не на месте,
Либо не на месте и дурак!»
Представим, что три представителя народа высказались о короле. Первый: «Либо он дурак – либо не на месте»; второй: «Либо не на месте – либо он дурак»; третий: «Либо он дурак, либо не на месте, либо не на месте и дурак». Одинаков ли смысл трех высказываний? Какое из них наиболее точно соответствует сказке?
Задача 5. Постройте отрицания к высказываниям пиратов из задачи 1. Какие из этих отрицаний истинны?
Задача 6. Замените высказывания на противоположные:
1) Но с ветром худо и в трюме течи.
2) Ни Бог, ни дьявол не помогут ему спасти свои суда.
3) Случился штиль иль просто ветер встречный.
4) Вода и ветер сегодня злы, и зол, как черт, капитан.
Задача 7. В ансамбль приглашают всех, кто хорошо поет или танцует. Наташа хорошо и поет, и танцует. Пригласят ли ее в ансамбль?
Задача 8. Каждый из четырех гномов: Беня, Сеня, Веня и Женя – либо всегда говорит правду, либо всегда врет. Мы услышали такой разговор:
Беня – Вене: «Ты врун».
Женя – Бене: «Сам ты врун!»
Сеня – Жене: «Да оба они вруны!» Подумав, он добавил: «Впрочем, ты тоже».
Кто из гномов говорит правду?
Задача 9. Математик с тремя детьми пришел в пиццерию.
– Хочу, чтобы в пицце были помидоры или грибы, – потребовала Аня.
– Пиццу с помидорами и грибами я есть не буду, – заявил Боря.
– Если будут помидоры, а грибов не будет, то я не буду есть, – добавил Ваня.
– Отлично! – воскликнул математик. – Сделайте нам, пожалуйста, пиццу с…
Так какую же пиццу заказал математик, чтобы все дети ее ели?
Задача 10. Андрей является участником шоу-викторины. Главный приз спрятан в одном из ящиков. Андрей получает 4 подсказки: