Большое космическое путешествие - страница 77

Теперь рассмотрим эту ситуацию с точки зрения инопланетянина из Галактики 3. Доплеровское смещение позволяет судить только лишь об относительной скорости галактик. Инопланетянин видит на расстоянии 100 миллионов световых лет галактику Млечный Путь, которая удаляется (влево) со скоростью 2000 км/c. Галактика 4, удаленная от этого астронома на 100 миллионов световых лет в противоположную сторону, удаляется от него (в другую сторону) с относительной скоростью 2000 км/c. Наконец, Галактика 1 удаляется от него с относительной скоростью 4000 км/c. Инопланетянину кажется, что все галактики разбегаются в стороны, и он находится в центре, откуда происходит такое разбегание. Инопланетянин считает, что находится в покое и все галактики от него убегают, – точно к такому выводу пришли и мы, будучи в Млечном Пути.


Рис. 14.1. Галактики расположены в ряд, где каждая следующая галактика удаляется быстрее предыдущей. Из рисунка понятно, что нет такой галактики, которая находилась бы в центре Вселенной. По верхнему краю рисунка изображены четыре галактики, вторая из которых – Млечный Путь. Они разделены промежутками по 100 миллионов световых лет. По закону Хаббла, они удаляются друг от друга тем быстрее, чем сильнее удалены одна от другой на этой линии. Первый набор из трех стрелок соответствует трем скоростям, которые будут измерены при наблюдении из Галактики 1. Поскольку эти измерения относительны, астроном из Млечного Пути полагает, что сам находится в покое, а три остальные галактики удаляются от него, причем скорость разбегания галактик пропорциональна расстоянию до них (следующий набор стрелок). То же самое справедливо при наблюдении из Галактики 3. Каждый из троих наблюдателей сочтет, что сам находится в покое, а все галактики разбегаются в стороны по закону Хаббла. Иллюстрация предоставлена: Майкл Стросс, «Млечный Путь» (художественное изображение, подготовленное в NASA); снимки других галактик предоставлены Слоановским цифровым обзором неба и Робертом Лаптоном


Инопланетянин, как и мы, приходит к выводу, что скорость разбегания пропорциональна расстоянию и ни Млечный Путь, ни Галактика 3 не занимают никакого особенного места во Вселенной.

На самом деле, закон Хаббла свидетельствует о двух фактах. Во-первых, расстояние между любыми двумя галактиками увеличивается; все галактики разбегаются друг от друга. Хаббл открыл расширение Вселенной! Во-вторых, ни одна конкретная галактика не находится в центре такого расширения. Находясь в своей галактике, мы приходим к выводу, что все остальные галактики разбегаются от нас. Галактики можно сравнить с бисеринками, приклеенными к эластичной резиновой ленте, и при растяжении ленты все бисеринки удаляются друг от друга. Чтобы окончательно убедиться, что центра расширения не существует, нужен еще один довод: мы должны убедиться, что пространство, заполненное галактиками, не имеет краев. Рич во всех подробностях рассмотрит эту тему в главе 22, где речь пойдет об общей теории относительности Эйнштейна применительно к космологии.

Млечный Путь достигает 100 000 световых лет в поперечнике, но он – всего лишь одна из 100 миллиардов (10) галактик в наблюдаемой части Вселенной, и в каждой из этих галактик порядка 100 миллиардов звезд. Туманность Андромеды – самая близкая к нам крупная галактика, от нее до Млечного Пути 2,5 миллиона световых лет; большинство галактик гораздо дальше, и расстояния до них могут измеряться миллиардами световых лет.

Эдвин Хаббл открыл, что галактики разбегаются друг от друга со скоростями, пропорциональными расстоянию между ними; для далекой галактики такая скорость удаления может составлять существенную долю скорости света. Поэтому мы приходим к выводу, что вся Вселенная расширяется. Это было поистине одно из величайших научных открытий XX века, сравнимое с открытием структуры ДНК и роли этой молекулы при передаче генетического кода либо с разработками Эйнштейна в области теории относительности.

Закон Хаббла позволяет без труда вычислять расстояния до галактик. Учитывая пропорциональность между красным смещением и расстоянием до галактики, достаточно измерить красное смещение галактики (что не составляет труда, если можно определить спектр галактики) – и получится непосредственно оценить расстояние до нее (в противном случае измерить это расстояние было бы сложно). Метод работает отлично, если знать константу пропорциональности H между двумя галактиками. Чтобы точно определить значение этой постоянной, мы для начала тщательно измеряем расстояния до галактик из заранее сделанной выборки, до каждой галактики отдельно.

Как мы уже убедились выше, измерение расстояния до астрономического тела – важный шаг на пути к познанию этого объекта. Зная расстояние до объекта, можно определить ряд его ключевых характеристик, в частности светимость и размер. Поэтому большая часть истории астрономии сосредоточена вокруг разнообразных хитроумных методов, разработанных учеными для измерения расстояний. Измерение астрономической единицы (расстояния от Земли до Солнца) в физических единицах (то есть метрах) было одной из крупнейших научных проблем XVIII и XIX века, и верно решить эту проблему в конце концов удалось, наблюдая за прохождениями Венеры по диску Солнца и за смещением Марса на фоне далеких звезд, причем эти наблюдения велись из разных точек Земли (см. главу 2). Такой эффект параллакса позволил определить расстояния до Венеры и до Марса, а следовательно, и расстояние от Земли до Солнца методом триангуляции. Астрономическая единица задает шкалу расстояний для всей Солнечной системы, а также позволяет использовать эффект параллакса на базе земной орбиты вокруг Солнца и таким образом определять расстояния до ближайших звезд. Если звезда находится так далеко, что измерить для нее наблюдаемый параллакс невозможно – то есть если до нее свыше нескольких сотен световых лет, – то в дело идет закон обратных квадратов, в котором соотносится истинная светимость звезды и наблюдаемая яркость этой звезды в небе. Чем тусклее выглядит на небе объект с известной светимостью, тем дальше он находится.