Большое космическое путешествие - страница 93
Искать черные дыры в центрах других галактик – непростая задача. Если черная дыра не подпитывается газом, текущим из аккреционного диска, то вокруг нее не будет никакого квазароподобного излучения и, соответственно, мы ее не увидим. Тем не менее можно ориентироваться на доплеровское смещение звезд вблизи от центров галактик и по этому эффекту угадывать присутствие объекта, обладающего огромной силой тяготения. Такой метод работает преимущественно с близлежащими галактиками, центральные области которых можно рассмотреть в телескоп. В этих областях движение звезд подчинено тяготению черной дыры.
К настоящему моменту астрономы прошерстили в поисках черных дыр примерно 100 галактик. В сущности, всякий раз, когда позволяла чувствительность аппаратуры, в центре галактики обнаруживалась сверхмассивная черная дыра. Насколько можно судить, в любой крупной галактике с полноценным балджем (речь идет об эллиптических и о большинстве спиральных галактик) находится черная дыра. Наш Млечный Путь с черной дырой примерно в 4 миллиона солнечных масс относительно нетипичен; наиболее массивные черные дыры в близлежащих галактиках в несколько миллиардов раз тяжелее Солнца (как, например, в галактике M87). Более того, чем крупнее эллиптическая галактика (или балдж спиральной галактики), тем массивнее будет расположенная там черная дыра. Масса черной дыры, как правило, составляет 1/500 от массы балджа окружающих ее звезд.
Поскольку квазары обладают колоссальной светимостью, они выглядят гораздо ярче галактик. Таким образом, далекий квазар намного ярче и, соответственно, заметнее, чем галактика, расположенная на том же расстоянии. Как далеко находится самый далекий квазар, который мы можем наблюдать во Вселенной? Опять же, поскольку скорость света конечна, тот свет, который мы видим, покинул квазар во времена, когда Вселенная была гораздо моложе. Когда астроном рассматривает далекие объекты, он видит их такими, какими они были в прошлом, так что телескоп подобен машине времени.
В главе 15 я рассказал о Слоановском цифровом обзоре неба – в рамках этого проекта были получены фотографии и красные смещения 2 миллионов галактик. Кроме того, он позволил узнать спектры более чем 400 000 квазаров. Эта выборка свидетельствует, что квазары были наиболее распространены в период от 2 до 3 миллиардов лет после Большого взрыва; считается, что именно в ту эпоху сверхмассивные черные дыры, обнаруживаемые сегодня в крупных галактиках, нарастили большую часть своей материи. Два миллиарда лет после Большого взрыва, то есть около 12 миллиардов лет назад, соответствуют величине красного смещения 3. Это означает, что длины волны спектральных линий в квазарах в 4 раза длиннее (то есть красное смещение + 1), чем были бы без поправки на расширение Вселенной. В данном случае красное смещение не малозаметный феномен, а серьезный эффект!
Эдвин Хаббл обнаружил линейную взаимосвязь между красным смещением галактик и расстоянием до них. Но при очень большом красном смещении это отношение немного усложняется. Оказывается, что квазар с красным смещением 3 сейчас удален от Земли примерно на 20 миллиардов световых лет. Как такое возможно, если Вселенной всего 13,8 миллиарда лет? Напоминаю, что с тех пор, как этот свет покинул квазар, Вселенная расширилась вчетверо (опять же, величина красного смещения + 1) и унесла квазар далеко. Поэтому сейчас он находится именно в 20 миллиардах световых лет от нас (такое расстояние называется сопутствующим).
На рис. 16.5 показан спектр самого далекого квазара, который удалось найти нам с коллегами при помощи Слоановского цифрового обзора неба. Очень выраженная эмиссионная линия с длиной волны 9000 Å (0,9 микрон) соответствует переходу со второго энергетического уровня к основному состоянию водорода – это водородная линия Лайман-альфа. В направлении синей части спектра (то есть в сторону коротких длин волн) спектр падает до нуля; оказывается, все дело в абсорбирующем эффекте водорода, находящегося в пространстве между квазаром и нами. Спектр характеризуется эмиссией в ближнем инфракрасном спектре, а на более коротких волнах эмиссии нет, поэтому данный объект и кажется невероятно красным.

Рис. 16.5. Спектр квазара SDSS J1148+5251 с красным смещением 6,42. Этот квазар открыли Майкл Стросс, Сяохуэй Фань и их коллеги в 2001 году. Данный квазар обладал самым большим красным смещением на момент открытия, рекорд был побит лишь в 2011 году. Свет квазара, который мы видим, был излучен, когда возраст Вселенной составлял менее 900 миллионов лет. Максимальный пик (эмиссионная линия) этого квазара связан с излучением от атомов водорода (переход с n = 2 на n = 1; см. рис. 6.2), причем излучение значительно сдвинулось в красную сторону спектра: от 1216 Å в состоянии покоя до актуальных 9000 Å. Резкий спад в спектре ниже 9000 Å связан с абсорбирующим эффектом водорода, находящегося в пространстве между нами и квазаром. Иллюстрация предоставлена: Майкл Стросс по данным из R.L. White, et al. 2003, Astrophysical Journal 126: 1 и A.J. Barth et al. 2003, Astrophysical Journal Letters 594: L95
Следовательно, задача поиска квазаров с максимальным красным смещением проста: отсматриваем снимки Слоановского цифрового обзора неба, ищем на них самые красные объекты, какие можем найти. Это не так просто, как кажется: в ходе Обзора было сфотографировано почти полмиллиарда объектов, и мы хотим убедиться, что выраженная краснота какого-либо конкретного объекта не связана с каким-нибудь редким дефектом обработки.