Большое космическое путешествие - страница 109

Рис. 19.2. На глобусе показана дуга большого круга, соединяющая Нью-Йорк и Токио. Снимок предоставлен Дж. Ричардом Готтом
Бросьте баскетбольный мяч в корзину – и он опишет дугу, а потом попадет в корзину. Да, очевидно, он летит по кривой линии (параболе). Может показаться, что траектория мяча изогнута на пару метров. Она изогнута точно так же, как и путь из Нью-Йорка в Токио на карте в проекции Меркатора. Идея Эйнштейна заключалась в том, что объекты в состоянии свободного падения будут, подобно баскетбольному мячу, двигаться по геодезическим линиям в искривленном пространстве-времени, по кратчайшим из возможных траекторий (если только на них не действуют другие силы, например электромагнитная). Считалось, что курс для частицы задать просто: «лети прямо». В физике частиц не суммируются совокупности сил, возникающих под действием различных масс, как предположил бы Ньютон. Любая частица попросту летит прямо. Пространство-время искривлено, и из-за этой кривизны возникает гравитация. Вспомните пространственно-временную схему с рис. 18.1, где мировая линия Солнца изображена в виде вертикальной полосы, а мировая линия Земли – в виде спирали, закрученной вдоль этой полосы. На самом деле это очень продолговатая спираль. Ее ширина – восемь световых минут, а расстояние между соседними оборотами равно одному световому году. Эйнштейн предположил, что солнечная масса слегка искривляет окружающее пространство-время, так что спиралевидная мировая линия Земли фактически повторяет кратчайшую возможную траекторию через пространство-время, как грузовик, который едет прямо в Токио. Мировая линия Земли может казаться искривленной в той координатной системе, что дана на рис. 18.1, но на самом деле Земля летит по кратчайшей возможной геодезической линии в искривленном пространстве-времени. Если знать, какова эта кривизна, то можно вычислить геодезическую линию, описываемую Землей вокруг Солнца.
Именно так Эйнштейн объяснял гравитацию. Ньютон бы сказал, что если взять две массы и оставить их в покое посреди межзвездного пространства, то они с ускорением устремились бы друг к другу под действием силы тяготения, пока бы наконец не столкнулись. Ньютон бы так решил, поскольку две массы воздействуют друг на друга с некоторыми силами через разделяющее их расстояние, и эти силы притягивают две массы друг к другу. Эйнштейн сказал бы, что две массы искривляют пространство-время каждая вокруг себя. В такой искривленной среде две частицы просто летят по кратчайшим доступным им траекториям и в итоге слетаются вместе.

Рис. 19.3. Каждый из грузовичков едет прямо на север, но из-за кривизны глобуса они сближаются и сталкиваются на Северном полюсе. Снимок предоставлен Дж. Ричардом Готтом
Предположим, у нас есть два грузовика, расположенных на некотором расстоянии от экватора, и оба этих грузовика едут на север (рис. 19.3 внизу). Они отправляются в путь по параллельным траекториям, поначалу ни приближаясь друг к другу, ни отдаляясь друг от друга, но не остаются на параллельных маршрутах, так как поверхность Земли искривлена. Допустим, оба грузовика едут на север по соседним меридианам (а это геодезические линии). Оба они направляются на север и сначала движутся параллельно друг другу, но чем дальше на север они забираются, не отклоняясь от своих меридианов, тем ближе друг к другу оказываются. В конце концов они столкнутся на Северном полюсе.
Согласно Эйнштейну, масса каждой частицы – источник кривизны пространства-времени, и эта кривизна подобна кривизне Земли. Направление «на север» соответствует направлению времени в будущее. Меридианы, по которым едут два грузовика, соответствуют мировым линиям двух частиц. Такие максимально прямые мировые линии двух частиц рисуются вместе в силу кривизны пространства-времени. Обратите внимание: если пустить два грузовичка по двум параллельным трекам на плоской столешнице, то грузовички так и поедут параллельно друг относительно друга и их геодезические линии останутся на одинаковом расстоянии. В теории Эйнштейна гравитационное притяжение обусловлено кривизной пространства-времени.
Масса и энергия вызывают искривление пространства-времени – но как? Эйнштейн принялся работать над этой идеей. Он поинтересовался у одного из друзей-математиков: «Мне нужно будет изучить тензоры кривизны Римана?» Друг ответил: «Боюсь, что да». Бернхард Риман разработал теорию кривизны в многомерных пространствах. Он писал работу, аналогичную диссертации, под руководством Карла Фридриха Гаусса. Гаусс был великим математиком и сформулировал теорию (гауссовой) кривизны для плоских поверхностей – например, для поверхности Земли. Гаусс предложил Риману самому придумать три варианта темы для диссертации. Третьей из любимых тем Римана была кривизна в высших измерениях. Гаусс сказал: «Работайте над ней». Риман так и сделал, и это был настоящий подвиг. Риман продемонстрировал, что для понимания кривизны в многомерных пространствах нужна сущность, которая сегодня именуется «тензор кривизны Римана»:. В четырех измерениях он казался математическим монстром, насчитывавшим 256 компонент. К счастью, многие из этих компонент были идентичны, так что, фактически, независимых компонент было всего 20 – все равно очень много. Эту математическую тварь Эйнштейну предстояло укротить. Он хотел сформулировать уравнения гравитационного поля, которые были бы полностью аналогичны максвелловским уравнениям электрического и магнитного поля. Как именно энергия и масса искривляют пространство-время? Какие геометрии возможны? Он хотел получить ответы на эти фундаментальные вопросы при помощи своей теории, но теория также должна была хотя бы приблизительно согласовываться с ньютоновскими теоретическими построениями для малых скоростей и небольшой кривизны, поскольку в таких условиях теория Ньютона работает очень хорошо.