Большое космическое путешествие - страница 110

Эйнштейн работал над этой проблемой с 1907 по 1915 год. Для этого потребовалась очень сложная математика. Неоднократно Эйнштейн оказывался на тупиковом пути. Но он не сдавался. И вот в конце 1915 года он нащупал верные уравнения поля. Вот они (в соответствующих единицах, где постоянная Ньютона G и скорость света c приравнены к 1). Уравнения выглядят так: R – ½gR = 8πT. Правая часть уравнения соответствует «материи» (массе, излучению и так далее), расположенной в некоторой точке пространства-времени, а левая часть уравнения показывает, каким образом пространство-время искривлено в этой точке. Материя во Вселенной определяет, как именно искривляться пространству-времени. Эйнштейн избавился от таинственного ньютоновского «действия на расстоянии». Материя, содержащаяся в некоторой точке Вселенной (вещество, излучение), заставляет пространство-время определенным образом искривляться именно в этом месте. Частицы и планеты также выбирают курс строго локально: они просто перемещаются по прямой в искривленном пространстве-времени. Вывод этих уравнений оказался тем еще испытанием. Сначала Эйнштейн полагал, что верные уравнения имеют вид R = 8πT.То есть он потерял один член. Интересно, что уравнения в таком виде корректны для вакуума. В вакууме никакой материи нет, поэтому, рассудил Эйнштейн, в вакууме T = 0.Поэтому он решил, что в вакууме и R = 0.Но если R = 0 в пустоте, то R (вычисляемое по компонентам R) также будет равно нулю, что будет удовлетворять и верным уравнениям поля с дополнительным членом – ½gR, которые были сформулированы в 1915 году. Ведь в вакууме и дополнительный член тоже будет равен нулю. Хотя поначалу Эйнштейн исходил из ошибочных уравнений поля, они, к счастью, оказались корректны для вакуума. Неделю спустя он понял, что нужно добавить еще один член – ½gR, чтобы в уравнениях учитывалось локальное сохранение энергии. Локальное сохранение энергии связано с таким условием: общая масса-энергия в комнате может возрасти лишь в том случае, если через дверь в комнату попадет какая-то дополнительная материя. Это очень удобное свойство уравнений. Точно так и Максвелл заметил, что должен добавить в свои уравнения еще один член, чтобы обеспечить сохранение заряда, и именно этот дополнительный член натолкнул Максвелла на мысль, что свет – это электромагнитные волны.

Эйнштейн сделал кое-какие расчеты при помощи своих уравнений поля. Он вычислил, какова должна быть кривизна пространства в вакууме вокруг Солнца. Затем он смог вычислить геодезическую, соответствующую спиральной мировой линии планеты. Он обнаружил, что в целом планеты в искривленном пространстве-времени следуют не по обычным эллиптическим орбитам, как считал Кеплер, а по эллиптическим траекториям, для которых характерна прецессия (то есть медленное вращение). Планета при орбитальном вращении не описывает все один и тот же эллипс; на самом деле, эллиптическая орбита любой планеты медленно вращается. Для большинства планет, которые достаточно далеки от Солнца, этот эффект ничтожен, но у Меркурия, чья орбита расположена ближе всего к Солнцу и отличается наибольшей кривизной, такой эффект можно было измерить. Эйнштейн вычислил, что эллиптическая орбита Меркурия должна испытывать прецессию (поворачиваться) на 43 секунды дуги за столетие. Эврика! Тогда удавалось обосновать непонятную прецессию орбиты Меркурия, время от времени фиксируемую астрономами, – Эйнштейн знал об этом явлении, а Ньютон не мог объяснить.

Эйнштейн так разволновался от этих вычислений, что у него даже (по его словам) сердце заколотилось. Уравнения давали верный результат – 43 секунды дуги за столетие, – изреченный самой Природой. Эти расчеты он сделал 18 ноября 1915 года. На тот момент он еще пользовался неверными уравнениями поля R = 8πT, но, к счастью, в данном конкретном случае они работали отлично, поскольку Солнце находится в вакууме.

В тот же день он вычислил, насколько должны искривляться лучи света, проходящие мимо Солнца. Он получил геодезическую линию, по которой должен идти свет в искривленном пространстве-времени поблизости от Солнца. У него получалось, что свет далекой звезды, который на пути к Земле пролетает мимо края солнечного диска, должен отклоняться на 1,75 секунды дуги. Такое отклонение можно наблюдать. Как рассмотреть звезды, расположенные у края солнечного диска? Нужно дождаться солнечного затмения, когда Луна попросту затмевает яркий солнечный свет. Можно измерить положения звезд на фотопластинке во время затмения, а затем измерить их полгода спустя, когда Земля будет по другую сторону от Солнца, а само Солнце – вдали от этих звезд. Потом останется сравнить две эти фотографии и положения звезд на них. Согласно уравнениям Эйнштейна, близ солнечного диска звезды должны быть сдвинуты на 1,75 секунды дуги. Эйнштейн предложил провести такой эксперимент во время солнечного затмения.

В этом отношении ему повезло. Ранее, еще не до конца доработав уравнения поля, он выдвигал качественную аргументацию, опираясь на принцип эквивалентности в примере с ускоряющимся космическим кораблем. Луч света, летящий прямо по горизонтали в межзвездном пространстве, после попадания в космический корабль должен был искривляться, поскольку прямой горизонтальный луч света в итоге врежется в корабельный пол, который с ускорением движется вверх навстречу лучу. Руководствуясь этой аналогией, Эйнштейн утверждал, что луч света должен искривляться под действием гравитации. Этот аргумент верно учитывал искривление во времени, но упускал искривление в пространстве, необходимое для построения полноценных уравнений поля, так что Эйнштейн получал лишь половину правильного ответа. У него получалось отклонение в 0,875 секунды дуги – именно к такому ответу пришел бы и Ньютон. Эйнштейн опубликовал эти выкладки и предложил проверить их во время солнечного затмения в 1914 году. Но началась Первая мировая война, и никаких экспедиционных наблюдений сделать не удалось. К счастью для Эйнштейна. В 1915 году у него уже был верный показатель отклонения света в искривленном пространстве-времени – 1,75 секунды дуги, и этот показатель расходился с ньютоновским прогнозом. Если бы эксперимент показал отклонение 0,875 секунды дуги – это подтвердило бы правоту Ньютона и опровергло Эйнштейна. Если бы никакого отклонения не обнаружилось, то Эйнштейн бы оказался побежден, но правоты Ньютона это бы не отменяло: возможно, предположил бы Ньютон, масса притягивает массу, но не притягивает свет. В таком случае Ньютон оставался бы в деле. Оставалось последнее решающее испытание. Эйнштейновский расчет прецессии Меркурия был эпигнозом, то есть прогнозом задним числом. Этот эпигноз объяснял уже известный эмпирический факт, не учтенный Ньютоном. Но в данном случае Эйнштейн делал именно прогноз, причем куда более радикальный.