Большое космическое путешествие - страница 114
Если аспирант попадет в черную дыру, которая в 3 миллиарда раз тяжелее Солнца, то, пока он будет падать до центра, где и погибнет, у него на часах пройдет 5,5 часа. К счастью, процесс спагеттификации, с того момента, как приливные силы станут болезненными и в итоге разорвут его на части, займет 0,09 секунды в самом конце пути. По крайней мере, его ждет быстрая смерть.
Возможно, нас также заинтересует, какова искривленная геометрия внешней границы черной дыры. Однажды меня пригласили на передачу «Час новостей с Мак-Нилом и Лерером», так как астрономы, работающие с телескопом «Хаббл», как раз открыли, что в галактике М87 существует черная дыра. Поэтому ведущие хотели, чтобы мы с Кипом Торном объяснили зрителям этот феномен. Я привел небольшой наглядный пример. Если построить плоскость, проходящую через центр черной дыры, то логично предположить, что эта плоскость должна быть ровной и двумерной как баскетбольная площадка, а радиус Шварцшильда должен ограничивать круг, напоминающий линию штрафного броска. Сингулярность – точка в центре такого круга. Но на самом деле все не так. Плоский сегмент, проходящий через центр черной дыры, на самом деле искривлен. Он похож на раструб, направленный вверх (рис. 20.1). Третье измерение здесь добавлено лишь для того, чтобы вы могли оценить кривизну двумерной воронкообразной поверхности. Третье измерение в данном случае иллюзорно. Забудьте о пространстве над воронкой и под ней, в данном случае реален лишь сам профиль воронки. На больших расстояниях раструб уплощается, поэтому в самом деле начинает походить на ровную баскетбольную площадку. Вдали от дыры кривизна невелика. Чем ближе вы к дыре, тем круче внутренняя поверхность раструба срывается в воронку. На радиусе Шварцшильда склон становится отвесным. Радиус Шварцшильда соответствует самой узкой окружности на поверхности раструба. Вот почему феномен называется «черная дыра» – это и есть дыра. На самом деле, в системе координат, изобретенный Карлом Шварцшильдом, радиальная координата rназывается окружным радиусом и определяется не как расстояние до центра, а по длине соответствующей окружности, которая должна быть равна 2πr. Окружности принадлежат поверхности воронки. А саму воронку можно рассматривать как последовательность сужающихся окружностей, наименьшая из которых расположено на дне воронки (ее длина равна 2π радиуса Шварцшильда). Радиус Шварцшильда – это радиус окружности, ограничивающей отверстие на дне воронки (не обращайте внимания на круглую основу с рис. 20.1 – она просто поддерживает воронку).
На телетрансляции я воспользовался в качестве наглядного пособия воронкой, напоминающей раструб. Я поставил ее так, чтобы «юбка» оказалась сверху, а узкий конец – снизу (см. рис. 20.1). Астрономы обнаружили, что вокруг черной дыры в галактике M87 с огромной скоростью вращается газ. Чтобы показать, как это происходит, я сбоку бросал бусинки в воронку, чтобы они по спирали медленно скатывались в отверстие, а потом исчезали там. Газ аналогичным образом вращается вокруг дыры, причем чем ближе к дыре молекулы газа, тем быстрее они вращаются. Между молекулами газа возникает трение. Из-за трения газ нагревается и начинает светиться. Это излучение можно наблюдать, поскольку оно возникает вне горизонта событий. При сиянии выделяется энергия, и газ, теряя энергию, соскальзывает в дыру. Именно таков источник сияния квазаров: там светится газ, по спирали сливающийся в массивную черную дыру. Мы видим горячий газ, когда он по спирали несется к горизонту событий, но он исчезает из виду, как только пересекает этот горизонт. Я тренировался все это показывать и уже счел, что демонстрация получилась наглядной (и уже можно снимать новостной сюжет). Затем я все показал дочке, которой тогда было семь, и она предложила: «Почему бы не сбросить туда астронавта»?

Рис. 20.1. Воронка черной дыры. Пространство вокруг черной дыры не плоское, как баскетбольная площадка, а искривлено подобно воронке. На радиусе Шварцшильда воронка становится отвесной. Это место обозначено красной полоской, имеющей длину 2π радиуса Шварцшильда. Астронавт может падать прямо в черную дыру. Когда он достигает радиуса Шварцшильда (красная полоска) – это точка невозврата. Не обращайте внимания на круглую основу, на которой стоит воронка. Также не обращайте внимания на то, что у нашей воронки есть внешняя и внутренняя поверхность; в данном случае реален лишь профиль воронки. Снимок предоставлен Дж. Ричардом Готтом
Она сходила к себе в комнату и вернулась с милым астронавтом «Аполлона» – он был в скафандре, держал в руке американский флаг и был 3 сантиметра длиной. Я и не знал, что у нее есть такая игрушка. Если вы по спирали скатываетесь в черную дыру, как те бусинки, то будете медленно спускаться в нее либо можете упасть прямо в дыру, как наш аспирант. Я положил игрушечного астронавта на край воронки и просто дал ему соскользнуть вниз – и он исчез в дыре. Отлично. Черная дыра – как тот отель, в который можно заселиться, но покинуть его уже невозможно. Астронавт, падающий прямо в черную дыру, летит по искривленной радиальной линии, устремляющейся в воронку (это геодезическая линия). Когда я отпускаю астронавта, он падает в воронку именно по такой линии – моя модель получается очень точной. Когда к тебе заявляется съемочная группа, съемка растягивается на несколько часов, делается множество дублей, но на государственном телеканале все это сокращается до небольшого сюжета. Телевизионщики засняли все тщательно продемонстрированные примеры с катящимися бусинами, но, как вы думаете, – что попало в эфир? Естественно, игрушечный астронавт, падающий в воронку. Итак, теперь вы знаете, как черная дыра выглядит снаружи: она напоминает воронку с отверстием в углублении.